Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reactions.

نویسندگان

  • P A Sherman
  • M L Dickson
  • J A Fyfe
چکیده

Using purified integration protein (IN) from human immunodeficiency virus (HIV) type 1 and oligonucleotide mimics of viral and target DNA, we have investigated the DNA sequence specificity of the cleaving and joining reactions that take place during retroviral integration. The first reaction in this process is selective endonucleolytic cleaving of the viral DNA terminus that generates a recessed 3' OH group. This 3' OH group is then joined to a 5' phosphoryl group located at a break in the target DNA. We found that the conserved CA located close to the 3' end of the plus strand of the U5 viral terminus (also present on the minus strand of the U3 terminus) was required for both cleaving and joining reactions. Six bases of HIV U5 or U3 DNA at the ends of model substrates were sufficient for nearly maximal levels of selective endonucleolytic cleaving and joining. However, viral sequence elements upstream of the terminal 6 bases could also affect the efficiencies of the cleaving and joining reactions. The penultimate base (C) on the minus strand of HIV U5 was required for optimal joining activity. A synthetic oligonucleotide mimic of the putative in vivo viral "DNA" substrate for HIV IN, a molecule that contained a terminal adenosine 5'-phosphate (rA) on the minus strand, was indistinguishable in the cleaving and joining reactions from the DNA substrate containing deoxyadenosine instead of adenosine 5'-phosphate at the terminal position. Single-stranded DNA served as an in vitro integration target for HIV IN. The DNA sequence specificity of the joining reaction catalyzed in the reverse direction was also investigated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach

Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...

متن کامل

Human cell proteins and human immunodeficiency virus DNA integration.

Integration, catalyzed by the viral integrase (IN) protein, is a crucial step in the life cycle of all retroviruses including human immunodeficiency virus type 1 (HIV-1). Although purified HIV-1 IN protein is sufficient to catalyze the DNA breakage and joining steps of integration in the absence of any other protein factor, a number of studies indicate that cellular proteins participate in the ...

متن کامل

Human immunodeficiency virus integrase protein requires a subterminal position of its viral DNA recognition sequence for efficient cleavage.

Retroviral integration requires cis-acting sequences at the termini of linear double-stranded viral DNA and a product of the retroviral pol gene, the integrase protein (IN). IN is required and sufficient for generation of recessed 3' termini of the viral DNA (the first step in proviral integration) and for integration of the recessed DNA species in vitro. Human immunodeficiency virus type 1 (HI...

متن کامل

Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses.

Integration into the host genome is one of the hallmarks of the retroviral life cycle and is catalyzed by virus-encoded integrases. While integrase has strict sequence requirements for the viral DNA ends, target site sequences have been shown to be very diverse. We carefully examined a large number of integration target site sequences from several retroviruses, including human immunodeficiency ...

متن کامل

Human immunodeficiency virus type 2 preintegration complexes: activities in vitro and response to inhibitors.

We have established an assay for the function of preintegration complexes (PICs) of human immunodeficiency virus type 2 (HIV-2) to investigate the integration mechanism and to develop additional methods for screening candidate integration inhibitors. We partially purified HIV-2 PICs and found that they were competent to integrate viral cDNA into target DNA in vitro. Analysis of the structure of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 66 6  شماره 

صفحات  -

تاریخ انتشار 1992